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A generalization of point-set topology is constructed in terms of arbitrary 
partially ordered sets. The possible usefulness of this construction in quantum 
theory, and specifically quantum gravitation, is discussed. 

1. INTRODUCTION 

Starting with the notion of a filter in a partially ordered set (poset), we 
define topological structures in such a way that each topological structure 
on a poset defines an ordinary point-set topology on a subset of the 
maximal filters of the poset. We then show that if the initial poset is the 
power set of some set S, ordered by inclusion, a subclass of our topological 
structures defines all possible point-set topologies on S. The advantages of 
the more general approach for physical purposes becomes evident when 
the poset Q we start with is the set of empirical questions on a physical 
system, ordered by states, since then topological properties of any structure 
resulting from Q can be formulated purely in terms of the quantum 
structure of Q. In our last section we discuss this aspect of the construction 
in the context of a possible approach to quantum gravity. 

Throughout this paper, D, T, and L designate definitions, theorems 
and lemmas, respectively. 

2. GENERAL T STRUCYURES 

D1. The term poset will mean an arbitrary partially ordered set 
containing more than one element. Whenever a statement refers to 0 (the 
least element) or 1 (the greatest element), the reference is to be understood 
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nonrestrictively, i.e., the statement applies to arbitrary posets and the 
reference to 0 or 1 applies in the special case where such an element exists. 
For ( Q, < } a poset and R C Q, define 

R v = ( t E Q :  Vr@R,r<t) 

RA={tEQ: t4:Oandt<r, Vr@R) 

A nonempty subset F C Q will be called a filter in Q if 
(F1) q E F ~ ( q } V c F  
(F2) {q,r) cF~(q,r)AN F ~  

Let ~Q be the set of filters in Q, partially ordered by set inclusion, and let 
s C~r  be the set of maximalfilters in Q, i.e., 

s  ( F C ~ r  VG E~Q,FCG~F=G) 

We will designate elements of s by lower case Greek letters when we 
need to distinguish them from arbitrary filters (to be designated still by 
upper case Roman letters). 

L1. For Q a poset, ~OV~,s and [1EF, OCs162 

Proof First, ( F 1 ) ~ I ~ F ,  V F E ~ o ,  and since (q,O)A=~,VqEQ, 
(F2)~0~F ,  V F ~ Q .  Then, it is trivial that qq=0~(q)vE~Q.  Hence, 

O 4: N. Finally, it is easy to check that the union of any chain of filters is 
itself a filter, and so ~r contains an upper bound for any of its chains; 
therefore, by Zorn's lemma, s : ~ .  �9 

D2. For Q a poset, qEQ and F ~ s  o, we will write Izeq if q~/~. A 
topological structure (T structure) will mean a triplet {Q,A, T), where Q is 
a poset, A is a subset of s and T is a mapping 

T: A-->~r T~ 

such that, Vtt ~ A, 
(~-1) T~ci x 
(rE) VqET~, 3rET~: r<q andrE r) T~ 

per 
Q will be called the poset, A the domain, and T the topology of the T 
structure. For brevity, a T structure will often be denoted by the topology 
T of the structure. An element q E Q will be said to be a neighborhood in T 
of a maximal filter /~ CA if q E T~, and T~ will be called the filter of 
neighborhoods of/~ in T. An element q E Q will be said to be open in T if 
q E fq i~eq Tp,  i.e., if q is a neighborhood of all the maximal filters in A to 
which q belongs. 

Finally, for Q a poset define 

AQ={qEQ: {q}A=(q)}  



Empirical Topology 517 

AQ is called the set of atoms of Q, and Q is said to be atomic if 
VqE Q, ( q}AAAQ 4=ffL 

L2. If Q is an atomic poset, the correspondence/~ defined by 

a-->b% = { a) v , a~AQ 

is an injection from AQ into f~Q. 

Proof We have already noted in the proof of L1 that (a )  v is a filter. 
To see that it is maximal, assume { a ) V c F 6 ~ Q .  Then, by (F2), [qEF]~ 
[{q,a}A4=~]~[{q,a} A C (a} A = (a}]~[q  6 {a}V]. Hence, VFE~Q, {a} v 
C F ~ F  C (a} v, and so {a) v Ef2Q, and the correspondence a~/~a = {a) v 
is a mapping/~: AQ--->~2Q. That/~ is one-to-one is seen from a, b 6 AQ, [a =~b] 
~ [{a ,  b} A = O ] ~ [ a  6 {b}V]~[(a)  v 4 = {b}V]. 

D3. A T structure (Q,A, T} will be said to be atomic if Q is atomic 
and A is a subset of #(AQ), where/z is the mapping defined by L2. Since/~ 
is one-to-one, we can (and will) in this case identify h with the set of atoms 
D=/x-I(A),  and so write an atomic T structure as {Q,D, T} with 

T: D-->~Q: a--~ Ta= Tm 

A particularly important example of an atomic T structure is given by any 
standard point-set topological structure (Treves, 1967), called simply a 
topological space or TS, and specified by requiring that the poset Q be the 
power set Ps  of some nonempty set S, equipped with the partial ordering 
of set inclusion (obviously ~ s is then an atomic poset), and setting 
D=AQ=((x}:  x ~ S } .  Since in this case D has a natural identification 
with S itself, it is customary to denote a TS simply by {S, T), with Q =  s) s 
understood, and the topology T considered as a mapping 

T: S ~ s :  x--, Tx 

3. T O P O L O G I C A L  S P A C E S  F R O M  T S T R U C T U R E S  

L3. Given a T structure {Q,A, T}, if, for each qE U~aT~, we define 

Nq = ( ~ EA; #eq) 

then, for each/~ ~ A, the family of subsets 

T~=(N cA: ::IqeTt~,Nqc N } 

is a filter in the poset { Pa, C }. 
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Proof. T~ is nonempty, since T~:/:~tEIq@ T~,: Nqva~]~Nq E T~, 
and (F1) is obviously satisfied, from the definition above. To see that (F2) 
is verified we have the following chain of implications: [NE  T~ and 
M E T~]~[3q, rE T~: Nq c N  and NrCM]~[{q,r)AN T~=/=~5]~[at~ T~: 
t~O, t <q and t <r]~[NtET~], where Nt={gEA:  vet). But g e t ~ t E g ~  
[(q,r)cI,,VgENt]=:~[Vg~Nt, t, ENq and ~,~Nr]~[NtCNqNNr]~[NtcN 
n M]~[N N M ~ T~], by (F1). Hence T~ is a filter of subsets in e2 a. �9 

D4. For (Q,A, T} a T structure, and T~,F~A, the filter of subsets in 
h given in L3, let T* be the mapping 

T*: A--->~ :/s----* T~ 

T1. For (Q,A, T) a T structure, (A, T*} is a topological space (i.e., T* 
is a point set topology on A). 

Proof. From D3, what we need to show is that (~)a, A*, T*) is a T 
structure, where A* is the set of maximal filters in ~a generated by the 
atoms ( / t ) E ~ a ,  i.e., A*=(/x*: /~EA}, t~*=(NcA:  / t E N ) ,  and T~,= 
T~,btEA. But N E T ~ [ 3 q E T ~ :  NqCN], and, from (zl), q ~ T , ~ q E t z ~  
I~eq~ l~ENq~ l~N~N EF*. Hence, VF* CA*, T~. C/t*, and (~1) is veri- 
fied for (Pa, A*, T* }. To see that ('r2) is also satisfied, we have, from the 
definition in L3, r < q ~ N  r C Nq, since r < q implies q E/x if r ~/~, and from 
(~-2) applied to ( Q, A, T ) we have Vq E T~, 3 r ~ T~: r ~< q and r E N ~r T~. 
But r E  n~,erTp:=:>[Nr E T*, Vver]~[N, E N perT*]=~[Nr E N~eu T*]. Hence, 
N E T~.~[3q~ T~: NqCN]~[3r~ T,: N~cN and N~E n ~.eN T~**], and so 
0"2) is established for (62a, A*, T*), which implies that (A, T*] is a topologi- 
cal space in the ordinary meaning of point set topology. I 

4. POSSIBLE RELEVANCE FOR QUANTUM GRAVITY 

If in a theory of quantum gravity we wish to preserve at least the spirit 
of Einstein's insight that gravitation should be considered, not as an 
additional fundamental force, but as an effect (curvature) produced by the 
presence of mass-energy-momentum in the differentiable manifold struc- 
ture of classical space-time, then it becomes reasonable to postulate that 
space-time itself with its macroscopic differentiable topological structure, 
including gravitation as curvature, should result as a by-product of the 
other fundamental quantum interactions needed to explain physical reality. 
This viewpoint does not preclude the possibility that an additional funda- 
mental field quantum may be needed (and it might well resemble the 
graviton of many current approaches), but it does not require the a priori 
introduction of such a particle. It does, however, go counter to any 
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viewpoint that would make the classical differentiable space-time structure 
a necessary foundation for doing quantum field theory at all. Possible 
evidence favoring the viewpoint outlined here might be the facts that 
gravitation seems to be macroscopic (it seems so far to play no role in 
fundamental interactions) and that current theories, introducing classical 
differentiable space-time as a necessary background, run into divergence 
problems--general relativity in the high density limit with black holes and 
quantum field theory with its need for renormalization as soon as any 
interactions are introduced. 

In any case, and certainly with the viewpoint proposed above, if there 
is to be a proper wedding of gravitation and quantum theory we should 
have a means of formulating topological properties resulting from various 
models in purely quantum terms. The general topological structures de- 
fined above provide this means. We hope to investigate in future what a 
generalization of differentiable manifolds and distribution theory might 
look like in terms of T structures. 

APPENDIX 

(Contributed by John R. Blum, Department of Physics, Loyola Uni- 
versity, New Orleans, Louisiana, 70118) 

The following example, based on a small finite poset, illustrates a 
general T structure and the point-set topological space it generates. Since 
finite posets are atomic, we use the notation adapted for atomic T 
structures. The diagrams represent partial ordering by joining lines, the 
greater element having higher altitude. 

Example: 

Q = { l ,O,a,b ,c ,d ,e , f ,g ,h , i , j ,k ,m,n)  

J~ k m n 

"-.5/// 
0 

[Q, ~] 
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Card Q = 15 is odd. So Q is not equivalent to a power set. Therefore, any T 
structure on Q is not equivalent to a standard point-set topological space. 
#a = (a} v = (a,e,f , j ,k,m,l)  
tXb = ( b ) V= { b,e,g,h,j,k,n,l} 
~e=(c}V=(c,f ,g, i , j ,m,n,I}  
t.td= ( d} V= { d,h,i ,k,m,n,l} 
Let A= ( t~,,,t~b,lZ~,l~d},D =/~-~(A) = AQ = ( a,b,c, d) 

T:D-->%:a-~T~=T~ 

Ta={a} V, Tb=( g,j,n,l}, T~={f, j ,m,l},  Ta=(d} V 

The set of open elements in T is 

0 = { 1,O,a,d,f,j,m} 

e, g, h, i, k, and n are neighborhoods, but are not open. Note  that 

0E n r.= n T =Q 
~0 /~E~ 

since 0 ~/~ so/ ,  $ 0  for all/~ CA, and the intersection over the empty subset 
of A is the universal set Q in which 0 is a member.  

T* : D---->~ e D : a---~ T* = T~. 

7 ~ = { N  c D : 3 q e T ~ , N q C N }  

Nq={aED:#aeq),q~ ~_J T~, 
p, E A  

Na=(a ), Nj={a,c}, Ni=(c,d ), N,,,={a,c,d} 

Na---{d }, Ng={b,c}, Nj={a,b,c}, Nn={b,c,d } 

Ne=(a,6}, Nh={b,d}, Nk={a,b,d},  Nt={a,b,c,d } 

T* = {{a}, (a,b), (a,c), (a,d}, (a,b,c), {a,b,d}, (a,c,d},D } 

r; ((b,c},{b,c,d}, {a,b,c),D} 

T* = { (a ,c} ,  {a,b,c}, {a,c,d) ,D } 

r~  = {(d} ,  ( a,d}, ( b,d), ( c,d}, ( a,b,d }, { a,c,d}, { b,c,d},D } 

The class of open sets in T* is 

0 " - -  ( ( a ) ,  ( d } , ( a , c ) ,  (a,d) ,{a,b,c},  (a ,c ,d) ,D)  
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,d} 
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